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SYSTEM AND METHOD OF VEHICLE

SPEED ESTIMATION USING MOVING

CAMERA AND TIME SERIES NEURAL
NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of priority to provi-
sional application No. 63/426,211 filed Nov. 17, 2022, the
entire contents of which are incorporated herein by refer-
ence.

This application 1s related to provisional application No.
63/397,049 filed Aug. 18, 2022, the entire contents of which
are 1ncorporated herein by reference.

This application 1s related to Attorney Docket No.
54444508 titled “System and method to detect Tailgating
Vehicle on high speed road from a moving vehicle”, U.S.
application Ser. No. 18/173,126 having a filing date of Feb.
23, 2023, the enftire contents of which are incorporated
herein by reference.

STATEMENT REGARDING PRIOR
DISCLOSURE BY THE INVENTORS

Aspects of this technology are described 1n Mathew, Athul
M., Thariq Khalid, and Riad souissi, “3DCMA: 3D Convo-
lution with Masked Attention for Ego Vehicle Speed Esti-
mation,” Secure and Safe Autonomous Driving (SSAD)
Workshop and Challenge, Vancouver, Canada, Jun. 19,
2023, and preprint thereof, arXiv preprint arXiv:2212.05432
(2022), and 1s incorporated herein by reference in 1its
entirety.

TECHNICAL FIELD

Background

The present disclosure 1s directed to a neural network time
series model, and preferably, a 3D Convolutional Neural
Network (3D-CNN). with masked-attention (3D-CMA)
architecture to estimate ego vehicle speed using a single
front-facing monocular camera.

DESCRIPTION OF RELATED ART

Speed estimation of an ego vehicle 1s crucial to enable
autonomous driving and advanced driver assistance tech-
nologies. Due to functional and legacy issues, conventional
methods depend on in-car sensors to extract vehicle speed
through the Controller Area Network (CAN) bus.

The impact of electric vehicles today in contributing to an
energy-ellicient and sustainable world 1s 1immense. See
Graeme Hill, Oliver Heidrich, Felix Creutzig, and Phil
Blythe. The role of electric vehicles 1n near-term mitigation
pathways and achieving the UK’s carbon budget. Applied
Energy, 251:113111, 2019. Electric vehicles are a significant
influencing factor in the global push against climate change.
To this end, self-driving vehicles add further value by
enabling smart mobaility, planning, and control for intelligent
transportation systems. Predicting the ego vehicle speed
reduces fuel consumption and optimizes cruise control. See
Chao Sun, Xiaosong Hu, Scott ] Moura, and Fengchun Sun.
Velocity predictors for predictive energy management in
hybrid electric vehicles. I[EEE Transactions on Control
Systems lechnology, 23(3):1197-1204, 2014; and Thomas

Stanger and Luigi del Re. A model predictive cooperative
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2

adaptive cruise control approach. In 2013 American control
conference, pages 1374-1379. IEEE, 2013.

Early work estimated ego-motion using correspondence
points detection, road region detection, moving object detec-
tion, and other derived features. See Koichiro Yamaguchi,
Takeo Kato, and Yoshiki Ninomiya. Vehicle ego-motion
estimation and moving object detection using a monocular
camera. In 18th International Conference on Pattern Rec-
ognition (ICPR06), volume 4, pages 610-613. IEEE, 2006,
incorporated herein by reference in 1ts entirety. Furthermore,
8-point algorithm and RANSAC have been applied to get
the essential matrix of ego-motion. See Richard I Hartley. In
defense of the eight-point algorithm. /EEE Transactions on
pattern analysis and machine intelligence, 19(6):580-593,
1997, and Martin A Fischler and Robert C Bolles. Random
sample consensus: a paradigm for model fitting with appli-
cations to 1mage analysis and automated cartography. Com-
munications of the ACM, 24(6):381-395, 1981, each incor-
porated herein by reference in their entirety. Recent work
implemented an end-to-end CNN-LSTM network to esti-
mate the speed of an ego vehicle, seeHitesh Linganna
Bandari and Binoy B Nair. “An end to end learning based
cgo vehicle speed estimation system.” In 2021 IEEE Inter-
national Power and Renewable Energy Conference (IP-
RECON), pages 1-8. IEEE, 2021, incorporated herein by
reference 1n its entirety. The work performs evaluation on
DBNet and comma.a1 speed challenge dataset. See Yiping
Chen, Jingkang Wang, Jonathan L1, Cewu Lu, Zhipeng Luo,
Han Xue, and Cheng Wang Lidar-video driving dataset:
Learning driving policies effectively. In 2018 IEEE/CVE
Conference on Computer Vision and Pattern Recognition,
pages 5870-5878, 2018; and comma.ai speed challege.
https://github.com/commaai/speedchallenge, 2018, incorpo-
rated herein by reference in their entirety. Other work has
proposed speed estimation of vehicles from a CCTV point of
view. See Hector Mejia, Esteban Palomo, Ezequiel Lopez-
Rubio, Israel Pineda, and Rigoberto Fonseca. Vehicle speed
estimation using computer vision and evolutionary camera
calibration. In NeurIPS 2021 Workshop LatinX in AI, 2021,
incorporated herein by reference 1n 1ts entirety. Most require
camera calibration and fixed view so that the vehicles pass
through certain lines or regions of interest.

FlowNet and PWC-Net are deep neural networks to
estimate optical flow 1n videos. See Eddy Ilg, Nikolaus
Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovits-
kiy, and Thomas Brox. Flownet 2.0: Evolution of optical
flow estimation with deep networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2462-24770, 201°7; and Deqing Sun, Xiaodong
Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for
optical flow using pyramid, warping, and cost volume. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8934-8943, 2018, incorporated
herein by reference 1n their entirety. FlowNet or PWC-Net
can be used to estimate the ego vehicle speed. See Robert-
Adnan Rill. Speed estimation evaluation on the kitt1 bench-
mark based on motion and monocular depth information.
arXiv preprint arXiv: 1907.06989, 2019; and Jun Hayakawa
and Behzad Dariush. Ego-motion and surrounding vehicle
state estimation using a monocular camera. In 2019 /EEE
Intelligent Vehicles Symposium (IV), pages 2550-2556.
IEEE, 2019, incorporated herein by reference in their
entirety. However, ego vehicle speed estimation 1s per-
formed by further post-processing on the optical flow pixel
velocity. No work demonstrates end-to-end architecture
capability where the speed could be learned with differen-
tiation of the loss function.
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Accordingly 1t 1s one object of the present disclosure to
provide a method and system for ego vehicle speed estima-
tion that includes camera data video frames from a moving,
car, processed with a neural network time series model, 1n
particular, 3D convolutional neural network (3D-CNN), that
generates a masked-attention input which the 3D-CNN
network uses to estimate a speed of the ego vehicle.

SUMMARY

An aspect of the present disclosure 1s a system for ego
vehicle speed estimation. The system can include a car-
mounted monocular camera for capturing a sequence of
video frames of an outdoor scene from a moving car, where
the outdoor scene includes a road, as a camera channel;
processing circuitry configured with a single-shot network
and a neural network time series model, the single-shot
network segments features of the road 1n the video frame
sequence and generates a masked-attention map for the
segmented road features; a concatenation operation that
concatenates the masked-attention map as an additional
channel to the camera channel to generate a masked-atten-
tion input; the neural network time series model receives the
masked-attention mput and generates an estimated speed of
the ego vehicle based on displacement of the segmented
road features 1n the video sequences; and output circuitry to
output a signal indicating the estimated speed.

A Turther aspect of the present disclosure 1s an embedded
ego vehicle speed estimation apparatus. The apparatus can
include processing circuitry configured with a single-shot
network and a neural network time series model, the single-
shot network segments features 1n a video frame sequence of
a road and generates a masked-attention map for the seg-
mented road features:; a concatenation the neural network
time seties model receives the masked-attention input and
generates an estimated operation that concatenates the
masked-attention map as an additional channel to a camera
channel to generate a masked-attention input; speed of the
cgo vehicle based on displacement of the lane line segments
in the video sequences; and output circuitry to output a
signal indicating the estimated speed.

A Tfurther aspect of the present disclosure 1s a non-
transitory computer readable storage medium storing com-
puter instructions, which when executed by processing
circuitry, perform a method of ego vehicle speed estimation.
The method can include segmenting, by a single-shot net-
work, features in a video frame sequence of a road and
generates a masked-attention map for the segmented road
features; concatenating, by a concatenation operation, the
masked-attention map as an additional channel to a camera
channel to generate a masked-attention input; receiving, by
a neural network time series model, the masked-attention
input and generating an estimated speed of the ego vehicle
based on displacement of the lane line segments 1n the video
sequences; and outputting a signal indicating the estimated
speed.

The foregoing general description of the illustrative
embodiments and the following detailed description thereof
are merely exemplary aspects of the teachings of this
disclosure, and are not restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the invention and many
of the attendant advantages thereof will be readily obtained
as the same becomes better understood by reference to the
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4

following detailed description when considered 1n connec-
tion with the accompanying drawings, wherein:

FIG. 1 i1llustrates estimation of ego-vehicle speed using a
continuous camera stream;

FIG. 2 15 a top view of an exemplary vehicle having video
cameras mounted thereon:

FIG. 3 illustrates an exemplary USB dashcam;

FIG. 4 1s a block diagram of a hardware implementation
of a tailgating detection system in accordance with an
exemplary aspect of the disclosure;

FIG. 5 1s a block diagram of an architecture of 3D-CMA;

FIG. 6 1s a block diagram of an architecture having lane
line segmentation including an encoder and a decoder;

FIG. 7 1s a block diagram of an architecture of ViViT;

FIGS. 8A-8D 1llustrate visualization of sample images of
the KITTI and nulmages dataset;

FIGS. 9A-9D are graphs of train/test speed data distribu-
tion for nulmages and KITTI datasets; and

FIG. 10 1s an 1llustration of a non-limiting example of
details of computing hardware used 1n the computing sys-
tem, according to aspects of the present disclosure;

FIG. 11 1s an exemplary schematic diagram of a data
processing system used within the computing system,
according to aspects of the present disclosure;

FIG. 12 1s an exemplary schematic diagram of a processor
used with the computing system, according to aspects of the
present disclosure; and

FIG. 13 1s an 1illustration of a non-limiting example of
distributed components that may share processing with the
controller, according to aspects of the present disclosure.

DETAILED DESCRIPTION

In the drawings, like reference numerals designate 1den-
tical or corresponding parts throughout the several views.
Further, as used herein, the words “a,” “an” and the like
generally carry a meaning of “one or more,” unless stated
otherwise. The drawings are generally drawn to scale unless
specified otherwise or illustrating schematic structures or
flowcharts.

Furthermore, the terms “approximately,” “approximate,”
“about,” and similar terms generally refer to ranges that
include the identified value within a margin of 20%, 10%, or
preferably 5%, and any values therebetween.

The present disclosure provides eflective yet simple
modular components for autonomous or intelligent trathic
systems. Advanced Driver Assistance Systems (ADAS) are
being made to improve automotive safety. Vehicles may
ofler driver assistance technologies including Autonomous

mergency Braking and a safe distance warning. ADAS
may take into consideration environmental conditions and
vehicle performance characteristics. Environmental condi-
tions can be obtained using vehicle environment sensors.
Vehicle cameras can capture a continuous camera stream.
The term ego vehicle refers to a vehicle that contains vehicle
environment sensors that perceirve the environment around
the vehicle. Edge computing devices are computing devices
that are proximate to the data source, such as vehicle
environment sensors.

FIG. 1 i1llustrates estimation of ego-vehicle speed using a
continuous camera stream. The present disclosure includes a
3D Convolutional Neural Network (3D-CNN) architecture
trained on short videos using corresponding grayscale image
frames 102 and corresponding focus masks, such as masks
that focus on road lane lines 104, lane line segmentation
masks. The neural network architecture 1s used to estimate
the speed 112 of the ego vehicle, which can, i turn help n

- Y 4
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ADAS, including, among other things, to estimate the speed
of vehicles of interest (VOI) 1n the surrounding environ-
ment.

FIG. 2 1s a top view of an exemplary ego vehicle having
video cameras mounted thereon. Video cameras mounted on
an ego vehicle may be used to obtain video 1images to be
used to estimate the speed of the ego vehicle. The ego
vehicle 200 can be of any make in the market. A non-limiting
ego vehicle can be equipped with a number of exterior
cameras 204 and interior cameras 210. One camera 214 for
speed estimation can be mounted on the front dash, the front
windshield, or embedded on the front portion of the exterior
body and/or on the ego vehicle roof 1n order to capture
images 1n front of the ego vehicle for external vehicles. The
camera 1s preferably mounted integrally with a rearview/side
mirror on the driver’s side of the ego vehicle on a forward-
facing surface (1.¢., facing trathic preceding the ego vehicle).
In this position the camera 1s generally oriented within the
view of an individual inside the ego vehicle such that a
driver can concurrently check for oncommg traflic behind
the ego vehicle using the rearview side mirror and monitor
the position of preceding vehicles.

FIG. 3 illustrates an exemplary exterior-facing camera,
which may be, but 1s not limited to, a USB camera 310 with
a base that can be attached to the rearview mirror, side
mirror, windshield, dashboard, front body panel, or roof of
the ego vehicle 200, to name a few. The camera 310 can be
a USB camera for connection to an edge computing device,
that 1s proximate to the USB camera, by a USB cable. The
USB camera 310 may be of any make which can channel a
video stream. In one embodiment, the speed estimation
apparatus 1s an all-in-one portable module that 1s removably
mounted on a ego vehicle 200. Preferably the all-in-one
portable module has a camera back plate which 1s curved to
generally match the contours of the forward-facing surface
of a side view mirror, €.g., an ovoidal shape having a flat
inner surface matching the contours of the forward face of
the side view mirror and a curved dome-like front surface
with the camera lens/opening located at an apex of the dome
shape. The back plate 1s optionally integral with a neck
portion that terminates in a thin plate having a length ot 5-20
c¢m which can be inserted into the gap between the window
and patrol vehicle door to secure the all-in-one portable
module to the ego vehicle. A cable and/or wireless capability
may be included to transfer captured images to the edge
computing device while the ego vehicle 1s moving.

The video camera 310 1s capable of capturing a sequence
of 1mage frames at a predetermined frame rate. The frame
rate may be fixed or may be adjusted 1n a manual setting, or
may be set based on the mode of image capture. For
example, a video camera may have an adjustable frame rate
for 1mage capture, or may automatically set a frame rate
depending on the type of image capture. A burst image may
be set for one predetermined frame rate, while video capture
may be set for another predetermined frame rate.

In embodiments, ego vehicle speed 1s estimated based on
video 1mages of the surrounding environment. In some
embodiments, the speed estimation 1s determined using
machine learning technology. 2D Convolutional Neural Net-
works have proven to be excellent at extracting feature maps
for images and are predominantly used for understanding the
spatial aspects of 1images relevant to image classification and
object detection. However, 2D Convolutional Neural Net-
works cannot capture the spatio-temporal features of videos
spread across multiple continuous frames.

Neural network time series models can be configured for
video classification. Neural network approaches that have
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been used for time series prediction include recurrent neural
networks (RNN) and long short-term memory (LSTM)
neural networks.

In addition, 3D Convolutional Neural Networks can learn
spatio-temporal features and thus help 1n video classifica-
tion, human action recognition, and sign language recogni-

tion. Attention on top of 3D-CNN has also been used. See
Rohit Girdhar, Joao Carreira, Carl Doersch, and Andrew

Zisserman. Video action transtormer network. In Proceed-

ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 244-233, 2019; Chao-Yuan Wu,

Christoph Feichtenhotfer, Haoqi Fan, Kaiming He, Philipp
Krahenbuhl, and Ross Girshick. Long-term feature banks for
detailed video understanding. In Proceedings of the IEEE/
CVE Conference on Computer Vision and Pattern Recog-

nition, pages 284-293, 2019; and Xiaolong Wang, Ross
Girshick, Abhinav Gupta, and Kaiming He. Non-local neu-
ral networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7794-7803,
2018, each incorporated herein by reference in their entirety.
However, they are limited to action recognition use cases.
Regression can also be performed using 3D-CNNs. See
Agne Grinciunaite, Amogh Gudi, Emrah Tasli, and Marten
den Uyl. Human pose estimation 1n space and time using 3d
cnn. In European Conference on Computer Vision, pages
32-39. Springer, 2016; Xiaoming Deng, Shuo Yang, Yinda
Zhang, Ping Tan, Liang Chang, and Hongan Wang. Hand3d:
Hand pose estimation using 3d neural network. arXiv pre-
print arXiv: 1704.02224, 20177; and Liuhao Ge, Hu1 Liang,
Junsong Yuan, and Daniel Thalmann. 3d convolutional
neural networks for eflicient and robust hand pose estima-
tion from single depth images. In Proceedings of the /[EEE
conference on computer vision and pattern recognition,
pages 1991-2000, 2017, each incorporated herein by refer-
ence 1n their entirety. However, the approaches perform
regression perform spatial localization-related tasks such as
human pose or 3D hand pose.

Vision Transformers (ViTs) capitalize on processes used
in transformers 1n the field of Natural Language Processing.
A non-overlapping takes patches of an image and creates
token embeddings after performing linear projection. See
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Thai, Thomas Unterthiner,
Mostata Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An 1mage 1s worth 16x16 words: Trans-
formers for 1mage recognition at scale. arXiv preprint arXiv:
2010.11929, 2020, mcorporated herein by reference in 1ts
entirety. These embeddings are concatenated with position
embeddings, aifter which they are processed with the trans-
former block, which contains layer normalization, Multi-
Head Attention, and MLP operations to produce a final
classification output. ViTs have been used to replace CNNs,
they lack the inductive bias, whereas CNN’s are translation
invariant due to the local neighborhood structure of the
convolution kernels. Moreover, transformers have quadratic
complexity for their operations and scale with the input
dimensions. On the other hand, ViTs provide global attention
and long-range interaction.

The inventors have determined that a hybrid CNN-Trans-
former with a CNN backbone, referred to as 3D-CNN with
masked attention (3D-CMA) can outperform the pure ViT
approach.

Video transtormer architectures can be classified based on
the embeddings (backbone and minimal embeddings),
tokenization (patch tokenization, frame tokenization, clip
tokenization), and positional embeddings.
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In disclosed embodiments, the ego vehicle speed 1s esti-
mated by relying purely on video streams from a monocular
camera. The ego vehicle speed can be estimated by onboard
hardware that implements a neural network time series
model. In some embodiments, the ego vehicle speed 1s

estimated using a hybrid CNN-Transformer (3D-CMA).

FIG. 4 1s a block diagram of an onboard hardware
implementation of an ego vehicle speed estimation system 1n
accordance with an exemplary aspect of the disclosure. The
hardware implementation of the speed estimation system
400 includes an 1image/video capturing device (video camera
310) and an edge computing device 420. The video camera
310 1s capable of capturing a sequence of image frames at a
predetermined frame rate. The frame rate may be fixed or
may be adjusted 1in a manual setting, or be set based on the
mode of 1image capture. For example, a video camera may
have an adjustable frame rate for image capture, or may
automatically set a frame rate depending on the type of
image capture. A burst image may be set for one predeter-
mined frame rate, while video capture may be set for another
predetermined frame rate.

The edge computing device 420 1s configured as an
embedded processing circuitry for ego vehicle speed esti-
mation. In one embodiment, the edge computing device 420
1s a portable, or removably mounted, computing device
which 1s equipped with a Graphical Processing Unit (GPU)
or a type of machine learning engine, as well as a general
purpose central processing unit (CPU) 422, and its internal
modules. The edge computing device 420 provides comput-
ing power that 1s sufficient for machine learning inferencing
in real time for tasks including vehicle speed estimation and
object detection, preferably all with a single monocular
camera. Internal modules can include communication mod-
ules, such as Global System for Mobile Communication
(GSM) 426 and Global Positioning System (GPS) 424, as
well as an input interface 414 for connection to the vehicle
network (Controller Area Network, CAN). A supervisory
unit 412 may control mnput and output communication with
the vehicle internal network. In one embodiment, the GPU/
CPU configured edge computing device 420 1s an NVIDIA
Jetson Series (including Orin, Xavier, Tx2, Nano) system on
module or an equivalent high-performance processing mod-
ule from any other manufacturer like Intel, etc. The video
camera 310 may be connected to the edge computing device
420 by a plug-in wired connection, such as USB, or may
communicate with the edge computing device 420 by a
wireless connection, such as Bluetooth Low Energy,
depending on distance to the edge device and/or communi-
cation quality 1n a vehicle. This set up 1s powered by the
vehicle’s battery as a power source. A power management
component 416 may control or regulate power to the GPU/
CPU 422, on an as needed basis.

A time-series model must be utilized to capture the
relative motion between adjacent 1mage data samples.

As a basis, a 2D convolution operation over an 1mage I
using a kernel K of size mxn 1s:

SU, jy=U*K)i, )= ) > G, PKG—m, j—n)

See lan J. Goodfellow, Yoshua Bengio, and Aaron Cour-
ville. Deep Learning. MIT Press, Cambridge, MA, USA,
2016, which 1s incorporated herein by reference in its
entirety.
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Expanding further on the above equation, the 3D convo-
lution operation can be expressed as:

Sthy iy )= U KBy i, jy= 3" 3 % Ak, i, PKh=1,i=m, j=n)
{f m n

where h 1s the additional dimension that includes the number
of frames the kernel has to go through. In one embodiment,
the kernel i1s convoluted with the concatenation of the
grayscale 1mages and lane line segmentation masks.

To this extent, a 3D-CNN network i1s incorporated to
preserve the temporal information of the input signals and
compute the ego vehicle speed. 3D-CNNs can learn spatial
and temporal features simultaneously using 3D kernels. In
one embodiment, small receptive fields of 3X3x3 are used as
the convolutional kernels throughout the network. Many
3D-CNN architectures lose big chunks of temporal infor-
mation after the first 3D pooling layer. This 1s especially
valid 1n the case of short-term spatio-temporal features
propagated by utilizing smaller temporal windows. The
pooling kernel size 1s dxkxk, where d 1s the kernel temporal
depth, and s 1s the spatial kernel size. In one embodiment,
d=1 1s used for the first max pooling layer to preserve the
temporal information. In this embodiment, 1t can be ensured

that the temporal information does not collapse entirely after
the 1nitial convolutional layers.

FIG. 5 1s a block diagram of an architecture of 3D-CNN
with masked attention (3D-CMA). FIG. 6 1s a block diagram
of an architecture having lane line segmentation including
an encoder and a decoder as part of the masked attention
layer. In some embodiments, a masked-attention layer 504 1s
added 1nto the 3D-CNN architecture 500 to guide the model
to focus on relevant features that help with ego-vehicle
speed computation. In one embodiment, the relevant fea-
tures are road lane lines.

An 1mage of an outdoor scene captured from a moving car
typically has significant clutter and random motion that can
obscure the model learning. For example, a scene can be
obstructed by other moving vehicles, moving pedestrians, or
birds and other animals. Road work zones and temporary
markers or lane markings may create unusual views of the
road. In some cases, road markings may transition from
temporary markings 1n Work zones to regular lane line
markings. Some roads may offer periodic mile markers.

A 3D-CNN model 1s preferably trained to filter out the
irrelevant movements (such as that of other cars, pedestri-
ans, etc.) that do not contribute towards the ego-vehicle
speed estimation and focus only on features that matter.
However, such a 3D-CNN model typically requires training
with large quantities of data. In a more practical scenario
where unlimited resources are not available, adding masked-
attention helps to attain improved model performance with
faster model convergence. As shown herein, the error in
speed estimation 1s reduced by adding masked-attention to
the 3D-CNN network 500. Further details about the impact
of masked-attention are described as part of an ablation
study below.

Convolutional neural networks comprise a learned set of
filters, where each filter extracts a different feature from the
image. An object 1s to 1nhibit or exhibit the activation of
features based on the appearance of objects of interest in the
images. Typical scenes captured by car-mounted 1imaging
devices 1nclude background objects such as the sky, and
other vehicles 1n the environment, which do not contribute
to ego-vehicle speed estimation. In fact, the relative motion
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of environmental vehicles often contributes negatively to the
ability of the neural network to inhibit irrelevant features.

To 1nhibit and exhibit features based on relevance, a
masked-attention map 506 i1s concatenated to the input
image 502 before passing an input image through the neural
network. Regarding FIG. 6, a single-shot network 504 1s
used with a shared encoder 614 and three separate decoders
that accomplish specific tasks such as object detection,
drivable area segmentation, and lane line segmentation.
Preferably, there are no complex and/or redundant shared
blocks between different decoders, which reduces compu-
tational consumption. CSP-Darknet 1s preferably used as the
backbone network 614 of the encoder, while the neck 1is
mainly composed of Spatial Pyramid Pooling (SPP) module
616 and Feature Pyramuid Network (FPN) module. See
Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan
Mark Liao. Scaled-yolov4: Scaling cross stage partial net-
work, 2020; Kaiming He, Xiangyu Zhang, Shaoqing Ren,
and Jian Sun. Spatial pyramid pooling 1n deep convolutional
networks for visual recognition. In Computer Vision—ECCV
2014, pages 346-361. Springer International Publishing,
2014; and Tsung-Y1 Lin, Piotr Dollar, Ross Girshick, Kaim-
ing He, Bharath Hariharan, and Serge Belongie. Feature
pyramid networks for object detection, 2016, each incorpo-
rated herein by reference in their entirety. SPP generates and
fuses features of different scales, and FPN fuses features at
different semantic levels, making the generated features
contain multiple scales and semantic level information.

In one embodiment, the masked-attention map 506 1s
generated from input video sequences 502 using the lane
line segmentation branch 504. The concatenation 512 of lane
line segmentation as an additional channel to the camera
channel allows the 3D-CNN 510 to focus on the apparent
displacement of the lane line segments i1n the video
sequences to best estimate the ego-vehicle speed.

Referring back to FIG. 6, the architecture 504 for lane line
segmentation includes an encoder 614 and a decoder 618.
The backbone network 614 1s used to extract the features of
the mput 1image 612. Typically, some classic 1mage classi-
fication network serves as the backbone. In one embodi-
ment, CSP Darknet 1s used as the backbone. The SPP 616
generates and fuses features of different scales.

The lane line segmentation head 618 1s configured such
that after three upsampling processes, an output feature map
622 1s restored to the size of (W; H; 2), which represents the
probability of each pixel in the input 1image 612 for the lane
line and the background.

In some embodiments, other road features may be used in
the segmentation for masked attention. Other road features
can 1nclude, but are not lmited to, periodic reflectors
marking road boundaries, road center rumble ridges, road
barriers having reflective markings, and mile marker posts.

In some embodiments, the background 1s used to classify
a road condition. Road conditions can include wet road, dry
road, icy road, or snow conditions, to name a few. In some
embodiments, the background can be used to classify the
type of road, including paved road vs an unfinished road.

In some embodiments, multiple branches may be used 1n
addition to lane line segmentation branch 504 for determin-
ing masked attention maps. Each of the multiple branches
may be for each of the different types of road features that
can be used to focus attention for speed estimation.

The 3D-CNN architecture with masked-attention (3D-
CMA) for ego vehicle speed estimation 1s illustrated in FIG.
5.

In the 3D-CNN architecture of FIG. 5, the RGB stream

can be converted to grayscale since color information 1s not
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vital for speed estimation. However, a masked attention map
406 1s concatenated 512 as an additional channel to the

grayscale image 502. To reduce the computational complex-

ity and memory requirement, the original input streams are
resized to 64x64 before feeding them into the network 510.
Thus, the input to the model has a dimension of nx64x64x2,
where n 1s the number of frames 1n the temporal sequence.

In one embodiment, all convolutional 3D layers 516, 522
use a fixed kernel size of 3x3x3. The 1nitial pooling layer
518 uses a kernel size of 1X2X2 to preserve the temporal
information. The subsequent pooling layer 524, which
appears at the center of the network, compresses the tem-
poral and spatial domains with a kernel size of 2x2x2. Six
3D convolutional layers 516, 522, 526, 528 are incorporated

with the number of filters for the layers from 1-6 being 32;
32; 64; 64; 128; 128 respectively. Finally, four fully con-
nected layers 532, 434, 436, 438 have 512; 256; 64 and 1

nodes.

The L2 loss function which 1s used for training the
3D-CNN 1s as follows:

where n 1s the number of frames in the input and S1 1s the
speed value ground truth of 1th corresponding frame, and S1
1s the inferred speed value. Xi 1s the grayscale image
channel, and X,, 1s the masked-attention channel for every
frame. W 1s the weight tensor of the 3D convolutional
kernel.

The ego vehicle speed estimation may encounter varying
conditions, such as varying road markings, varying road
conditions, and even varying road surface types. The ego
vehicle speed estimation can be configured to go into power
conserve modes depending on such varying conditions. In
some embodiments, the onboard hardware implementation
of an ego vehicle speed estimation system 400 may be
configured to use power efficiently. The hardware 1mple-
mentation 400 can be configured to halt processing of the
3D-CNN network when the segmented features do not
include road features that may be used to determine ego
vehicle speed. The hardware implementation 400 can be
configured to monitor ego vehicle speed obtained from
internal sensors while the 3D-CNN network 1s 1n the halted
state. The hardware implementation 400 can be configured
to intermittently perform processing using the 3D-CNN
network. The hardware implementation 400 can be config-
ured to continuously monitor vehicle speed while the ego
vehicle 1s 1n an operating state and periodically estimate
speed of the ego vehicle using the 3D-CNN network.

The effectiveness of the 3D-CMA model was evaluated.
First, the public datasets used in experiments are described.
Then the metrics used for evaluation are described. The
3D-CMA model architecture 1s compared against a ViViT, a
state-of-the-art vision transformer architectures. Addition-
ally, some ablation studies are described to characterize the
contribution of masked-attention within the network archi-
tecture and compare its performance by discarding the same

from the 3D-CNN.
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A Video Vision Transformer(ViViT) 1s used for some
cases due to 1its representation of the 3D convolution in the
form of Tubelet embedding. See Anurag Arnab, Mostafa
Dehghani, Georg Heigold, Chen Sun, Mario Luc ic’, and
Cordelia Schmid. Vivit: A video vision transformer. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 6836-6846, 2021, incorporated
herein by reference 1n its entirety. ViV1T 1s easily reproduc-
ible and has a good balance between the parameters and
accuracy for small datasets. Moreover, V1ViT-H scores an
accuracy of 95.8, just below the 93.9 accuracy score by
Swin-L. as per the Video Transformers Survey over
HowTol0OOM. See Javier Selva, Anders S Johansen, Sergio
Escalera, Kamal Nasrollahi, Thomas B Moeslund, and
Albert Clapés. Video transformers: A survey. arX1v preprint
arX1v:2201.05991, 2022; and Antoine Miech, Dimitr1 Zhu-
kov, Jean-Bapftiste Alayrac, Makarand Tapaswi, Ivan Laptev,
and Josef Sivic. Howto100m: Learning a text-video embed-
ding by watching hundred million narrated video clips. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2630-2640, 2019, each incorporated
herein by reference in their entirety.

FIG. 7 1s a block diagram of an architecture of ViViT. In
the ViVi1T, the frames from the video(N) are tokenized using
3D-Convolutional tubelet embeddings and further passed to
multiple transformer encoders to regress the speed value
finally.

The Vi1V1T includes extracting non-overlapping, spatio-
temporal “tubes” from the input volume, and to linearly
project this to R<. This method is an extension of ViT’s
embedding to 3D, and corresponds to a 3D convolution. For
a tubelet of dimension

T H W
IXhXw, n = [ ], Ry = [E] and n,, = [_]:

I W

tokens are extracted from temporal, height, and width
dimensions respectively. Smaller tubelet dimensions thus
result 1n more tokens which increases the computation.

A VIiT extracts N non-overlapping image patches, x,& R
w, 602 performs a linear projection and then rasterises them
into 1D tokens z.€ R? The sequence of tokens input to the
following transformer encoder 1s

i [Z Exl . Ex2, ..., EXN]‘hU

cls?

where the projection by E 1s equivalent to a 2D convolution.

As shown 1n FIG. 7, an optional learned classification
token z_, 704 1s prepended to this sequence, and its repre-
sentation at the final layer of the encoder serves as the final
representation used by the classification layer. In addition, a
learned positional embedding, pe R 706, is added to the
tokens to retain positional information, as the subsequent
self-attention operations 1n the transformer are permutation
invariant. The tokens are then passed through an encoder
consisting of a sequence of L transformer layers 710. Each
layer 1 comprises of Multi-Headed Self-Attention 724, layer
normalisation (LN) 618, 626, and MLP blocks 716.

The Transformer Encoder can be trained with the spatio-
temporal embeddings.

There 1s a lack of standardized datasets available for the
estimation of ego-vehicle speed from a monocular camera
stream. DBNet 1s a large-scale dataset for driving behavior
research which includes aligned videos and vehicular speed
from 1000 km driving stretch. See Yiping Chen, Jingkang
Wang, Jonathan Li, Cewu Lu, Zhipeng LLuo, Han Xue, and
Cheng Wang. Lidar-video driving dataset: Learning driving
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policies effectively. In 2018 IEEE/CVE Conference on Com-
puter Vision and Pattern Recognition, pages 3870-3878,
2018, incorporated herein by reference in its entirety. How-
ever, the test set 1s not available for public usage. Likewise,
the test set of comma.a1 speed challenge 1s not open to the
public. See comma.ai speed challenge, 2018, incorporated
herein by reference 1n its enftirety. KITTI dataset has been
utilized for speed estimation using motion and monocular
depth estimation. See Robert-Adrian Rill. Speed estimation
evaluation on the kitt1 benchmark based on motion and
monocular depth information, 2019, incorporated herein by
reference 1n 1ts entirety. However, there 1s no information
about the train and test splits used for the evaluation of the
models. In the present disclosure, two public datasets are
utilized for experiments—nulmages and KITTI. Some
sample 1images extracted from video sequences for nulmages
and KITTI are shown in FIGS. 7A-7D.

nulmages 1s derived from nuScenes and 1s a large-scale
autonomous driving dataset having 93 k video clips of 6
seconds each. See Holger Caesar, Varun Bankiti, Alex H.
Lang, Sourabh Vora, Venice Erin Liong, (1ang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom.
nuscenes: A multimodal dataset for autonomous driving. In
CVPR, 2020, incorporated herein by reference 1n its entirety.
The dataset 1s collated from two diverse cities—Boston and
Singapore. Each video clip consists of 13 frames spaced out
at 2 Hz. The annotated images include rain, snow, and night
fime, which are important for autonomous driving applica-
tions.

Each sample in the nulmages dataset comprises of an
annotated camera 1mage with an associated timestamp and
past and future 1mages. It 1s to be noted that the six previous
and six future 1mages are not annotated. The sample frame
has meta-data information available as token 1ds regarding
the previous and future frames associated with the particular
sample.

The vehicle speed i1s extracted from the CAN bus data and
linked to the sample data through sample tokens. The train
and test splits of the nulmages dataset have been strictly
followed for training and evaluating the AI models. The
distribution of speed data across train and test splits of the
nulmages dataset are shown 1n FIGS. 8A-8D.

The KITTI Vision Benchmark Suite 1s a public dataset
containing raw data recordings that are captured and syn-
chronized at 10 Hz. See Andreas Geiger, Philip Lenz, and
Raquel Urtasun. Are we ready for autonomous driving? the
kitti1 vision benchmark suite. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pages 3354-
3361, 2012; and A Geiger, P Lenz, C Stiller, and R Urtasun.
Vision meets robotics: The kitt1 dataset. The International
Journal of Robotics Research, 32(11):1231-1237, 2013,
each 1ncorporated herein by reference in their entirety.
Geiger et al., 2012, presented the benchmark challenges,
their creation and use for evaluating state-of-the-art com-
puter vision methods, while Geiger et al.,, 2013, was a
follow-up work that provided technical details on the raw
data itself, describing the recording platform, the data format
and the utilities.

The dataset was captured by driving around the mid-size
city of Karlsruhe. The “synched+rectified” processed data 1s
utilized where 1mages are rectified and undistorted and
where the data frame numbers correspond across all sensor
streams. While the dataset provides both grayscale and color
stereo sequences, an RGB stream 1s utilized extracted from
camera ID 03 only. The ego-vehicle speed values are
extracted from IMU sensor readings. The raw data 1s split
across six categories—City, Residential, Road, Campus,
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Person, and Calibration. For an experiment, data from City
and Road categories 1s utilized. Some video samples 1n the
City category have prolonged periods where the car is
stationary. Such video samples are discarded where the
vehicle was stationary for most of the video samples. To
facilitate future benchmarks from the research community
for ego-vehicle speed estimation, train and test splits are
reported 1n Table 1. The distribution of speed data across
train and test splits from the KITTI dataset 1s shown 1n FIGS.

9A-9D.
TABLE 1
train and test video samples for KITTI dataset
KITTI
Category Train Test
City 2011 _09Y 26 drive 0002, 0005, 0009 0001
0011, 0013, 0014 0117
0048, 0051, 0056
0059, 0084, 0091
0095, 0096, 0104
0106, 0113
2011 09 28 drive 0001
2011 _09Y 29 drive 0071
Road 2011 09 26 drive 015, 0027, 0028 0070
0029, 0032, 0052 0101

2011_09_29_drive 0004, 0016, 0042

0047

The conventional evaluation protocol used i1n the litera-
ture for the task of regression—Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE)—was used.

The MAE and RMSE are computed as follows :

1 L
RMSE =)1/[;)Zm -5,
i—1

I

waz = ()3

i=1

j’f_yf‘

where y. denotes the ground truth ego-vehicle speed value
and y.denotes the predicted speed value by the Al model.

RGB 1mages from the camera mounted in front of the
vehicle are used and ego-vehicle velocity coming from the
CAN-BUS across both public datasets. This information 1s
synchronized. The KITTI dataset has a camera 1image reso-
lution of 1238_3"/4. The temporal dimension we used for the
KITTI dataset 1s ten frames. The KITTI dataset 1s sampled
at 10 Hz, which means that the models are fed with video
frames containing visual information from a time window of
1 sec. The ego-vehicle velocity assigned to any temporal
sequence 1s the speed value tagged to the closest time stamp
of the 10th frame 1n the 1nput sequence.

On the other hand, the camera 1image resolution for the
nulmages dataset 1s 1600_900. nulmages dataset 1s sampled
at 2 Hz. S1x frames each are taken, preceding and succeeding
the sample frame. This means that the models are fed with
video frames containing visual information spanning a time
window of approximately 6 sec. The ego vehicle velocity
assigned to any temporal sequence 1s the speed value tagged
to the closest time-stamp of the sample frame (7th frame 1n
the 1nput sequence).

For the experiments with ViViT, non-overlapping, spatio-
temporal tubelet embeddings of dimension txXhXw are taken,
where t=6, h=8, and w=8. The number of transformer layers
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in the implementation 1s 16. The number of heads for
multi-headed self-attention blocks 1s 16, and the dimension
of embeddings 1s 128.

The Al models were trained using an Nvidia GeForce
RTX-3070 Max-Q Design GPU having 8 GB VRAM. The
learning rate used for training all models is 1x107>. All
models are trained for 100 epochs with early stopping
criteria set to terminate the training process if validation loss
does not improve for ten epochs consecutively. The opti-
mizer utilized 1s Adam since it utilizes both momentum and
scaling

The performance of the proposed 3D-CMA architecture 1s
evaluated and compared against the standard ViViT with
spatio-temporal attention. The evaluation metrics are
reported on the test set for KITTI and nulmages datasets 1n
the subsections below. The evaluation across all datasets
consistently reported better results for the 3D-CMA archi-
tecture.

Evaluation scores for the nulmages dataset are shown 1n
Table 2. Approximately 27% improvement was observed 1n
RMSE and MAE for 3D-CMA compared to ViViT for the

nulmages dataset.

TABLE 2

nulmages evaluation for (a) ViviT (b)3DCMA
Evaluation Metric

Method RMSE MAE
VIVIT 1.782 1.326
3D CMA 1.297 0.974

The evaluation shows 34:5% and 41:5% improvement in
RMSE and MAE respectively on the KITTI dataset for

3D-CMA compared to ViV1T. The results are seen 1n Table
3.

TABLE 3

Evaluation on KITTI dataset for (a) ViViT (b)3D-CMA
Evaluation Metric

Method RMSE MAE
VIVIT 5.024 4.324
3D CMA 3.290 2.528

To further understand the importance of masked-atten-
fion, an ablation study was conducted by removing masked
attention input to the 3D-CNN network. It 1s to be noted that
the input to the 3D-CNN model 1s a single-channel grayscale
image after the removal of the masked-attention input.

Evaluation scores for the nulmages dataset are shown 1n

Table 4. The addition of masked-attention reduces RMSE by
23:6% and MAE by 25:9% for the nulmages dataset.

TABLE 4

Evaluation on nulmages dataset for (a)3D-CNN
without masked-attention (b)3D-CMA

Evaluation Metric

Method RMSE MAE
3D-CNN without MA 1.698 1.315
3D CMA 1.297 0.974

Evaluation scores for the KITTI dataset are shown in
Table 5. The addition of masked-attention reduces the

RMSE by 25:8% and MAE by 30:1% for the KITTI dataset.
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TABLE 5

Evaluation on KITTI dataset for (a)3D-CNN
without masked-attention (b)3D-CMA
Evaluation Metric

Method RMSE MAE
3D-CNN without MA 4.437 3.617
3D CMA 3.290 2.528

To take 1nto consideration the generalization ability of the
Al models, evaluations were conducted across data sets and
their accuracy was reported. It 1s to be noted that there 1s a
shift 1n the domain when testing nulmages-trained Al mod-
els on the KITTI dataset due to the reasons stated 1n section
4.3, To test KITTI models on the nulmages dataset, ten
frames are needed within a duration of 1 second from
nulmages. Since the FPS of the nulmages dataset 1s only 2
FPS, evaluation was unable to encapsulate ten frames within
a temporal window of 1 sec. For this reason, testing dis-
carded KITTI models on the nulmages dataset. The KITTI
video stream was pre-processed to evaluate nulmages-
trained models on the KITTI dataset to ensure the temporal
windows are compatible. nulmages-trained models require
the temporal window to be 13 frames across 6 secs. How-
ever, KITTI dataset video streams are sampled at 10 Hz. The
frame decimation was used to sample the video at 2 Hz and
concatenate frames across 6 secs of the stream to encapsu-
late the 13 frames temporal window. The images were
resized and were allowed the mismatch 1n the image dimen-
s1ons between the two datasets to diversily the gap between
them 1n the evaluation. The results for two models are
reported below 1n Table 6.

TABLE 6

Evaluation of nulmages trained models on

KITTI test data for (a) ViViT (b) 3D-CMA
Evaluation Metric

Method RMSE (KITTI) MAE (KITTI)
ViViT (nulmages) 7.420 5.957
3D CMA (nulmages) 5.880 4.694

The present disclosure includes a modified 3D-CNN
architecture with masked-attention employed for ego
vehicle speed estimation using single-camera video streams.
3D-CNN 1s effective 1n capturing temporal elements within
an 1mage sequence. However, 1t was determined that pres-
ence of background clutter and non-cohesive motion within
the video stream often confused the model. To extend some
control over the focus regions within the images, the
3D-CNN 1s modified to employ a masked-attention mecha-
nism to steer the model to focus on relevant regions. In one

embodiment, the lane segmentation mask 1s concatenated as
an additional channel to the mput images before feeding
them to the 3D-CNN. The modified 3D-CNN has demon-
strated better performance 1n several evaluations with the
inclusion of the masked-attention.

The performance of the modified 3D-CNN architecture
was evaluated on two publicly available datasets—mnulmages
and KITTI. Though there are prior works utilizing the KITTI
dataset for the ego vehicle speed estimation task, none
clearly stated the train and test splits being used for reporting
the results. In the present disclosure, the train and test splits
from KITTI Road and City categories are reported.
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In terms of evaluation, the 3D-CMA 1s compared against
a recent state-of-the-art transformer network for videos,
ViViT. In addition, the impact of employing masked-atten-
tion to 3D-CNN 1s investigated and the injection of masked-
attention 1mproved the MAE and RMSE scores across all
scenar1os. The increase 1n the RMSE and MAE scores for
cross-dataset evaluation 1s due to the domain gap between
the two datasets. However, 3D-CMA continued to perform
better for the cross-data set evaluation as well.

Next, further details of the hardware description of an
exemplary computing environment according to embodi-
ments 1s described with reference to FIG. 10.

In FIG. 10, a controller 1000 1s a computing device which
includes a CPU 1050 which can perform the processes
described above.

The computing device may be an Al workstation running,
an operating system, for example Ubuntu Linux OS, Win-
dows, a version of Umx OS, or Mac OS. The computer
system 1000 may 1nclude one or more central processing
units (CPU) 1050 having multiple cores. The computer
system 1000 may include a graphics board 1012 having
multiple GPUs, each GPU having GPU memory. The graph-
ics board 1012 may perform many of the mathematical
operations of the disclosed machine learning methods. The
computer system 1000 includes main memory 1002, typi-
cally random access memory RAM, which contains the
soltware being executed by the processing cores 1050 and
GPUs 1012, as well as a non-volatile storage device 1004 for
storing data and the software programs. Several interfaces
for interacting with the computer system 1000 may be
provided, including an I/O Bus Interface 1010, Input/Pe-
ripherals 1018 such as a keyboard, touch pad, mouse,
Display Adapter 1016 and one or more Displays 1008, and
a Network Controller 1006 to enable wired or wireless
communication through a network 99. The interfaces,
memory and processors may communicate over the system
bus 1026. The computer system 1000 includes a power
supply 1021, which may be a redundant power supply.

In some embodiments, the computer system 1000 may
include a server CPU and a graphics card by NVIDIA, 1n

which the GPUs have multiple CUDA cores. In some
embodiments, the computer system 1000 may include a
machine learning engine 1012.

The exemplary circuit elements described 1n the context
of the present disclosure may be replaced with other ele-
ments and structured differently than the examples provided
herein. Moreover, circuitry configured to perform features
described herein may be implemented in multiple circuit
units (e.g., chips), or the features may be combined in
circuitry on a single chipset, as shown on FIG. 11.

FIG. 11 shows a schematic diagram of a data processing,
system 1100 used within the computing system, according to
exemplary aspects of the present disclosure. The data pro-
cessing system 1100 1s an example of a computer in which
code or mstructions implementing the processes of the
illustrative aspects of the present disclosure may be located.

In FIG. 11, data processing system 1180 employs a hub

architecture including a north bridge and memory controller
hub (NB/MCH) 1125 and a south bridge and input/output

(I/0) controller hub (SB/ICH) 1120. The central processing
umit (CPU) 1130 1s connected to NB/MCH 1125. The
NB/MCH 1125 also connects to the memory 11435 via a
memory bus, and connects to the graphics processor 11350
via an accelerated graphics port (AGP). The NB/MCH 1125
also connects to the SB/ICH 1120 via an internal bus (e.g.,
a unified media interface or a direct media interface). The
CPU Processing unit 1130 may contain one or more pro-
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cessors and even may be implemented using one or more
heterogeneous processor systems.

For example, FIG. 12 shows one aspects of the present
disclosure of CPU 1130. In one aspects of the present
disclosure, the instruction register 1238 retrieves instruc-
tions from the fast memory 1240. At least part of these
istructions 1s fetched from the mnstruction register 1238 by
the control logic 1236 and interpreted according to the
instruction set architecture of the CPU 1130. Part of the

istructions can also be directed to the register 1232. In one
aspects of the present disclosure the mstructions are decoded
according to a hardwired method, and 1n another aspect of
the present disclosure the 1nstructions are decoded according,
to a microprogram that translates instructions into sets of
CPU configuration signals that are applied sequentially over
multiple clock pulses. After fetching and decoding the
instructions, the instructions are executed using the arith-
metic logic unit (ALU) 1234 that loads values from the
register 1232 and performs logical and mathematical opera-
tions on the loaded values according to the instructions. The
results from these operations can be feedback into the
register and/or stored 1n the fast memory 1240. According to
certain aspects of the present disclosures, the instruction set
architecture of the CPU 1130 can use a reduced instruction
set architecture, a complex instruction set architecture, a
vector processor architecture, a very large instruction word
architecture. Furthermore, the CPU 1130 can be based on the
Von Neuman model or the Harvard model. The CPU 1130
can be a digital signal processor, an FPGA, an ASIC, a PLA,
a PLD, or a CPLD. Further, the CPU 1130 can be an x86
processor by Intel or by AMD; an ARM processor, a Power
architecture processor by, e.g., IBM; a SPARC architecture
processor by Sun Microsystems or by Oracle; or other
known CPU architecture.

Referring again to FIG. 11, the data processing system
1180 can include that the SB/ICH 1120 1s coupled through
a system bus to an I/O Bus, a read only memory (ROM)
1156, universal serial bus (USB) port 1164, a flash binary
input/output system (BIOS) 1168, and a graphics controller
1158. PCI/PCle devices can also be coupled to SB/ICH 1120
through a PCI bus 1162.

The PCI devices may include, for example, Ethernet
adapters, add-in cards, and PC cards for notebook comput-
ers. The Hard disk drive 1160 and CD-ROM 1156 can use,
for example, an integrated drive electronics (IDE) or serial
advanced technology attachment (SATA) interface. In one
aspects of the present disclosure the I/O bus can include a
super I/O (SI0) device.

Further, the hard disk drive (HDD) 1160 and optical drive
1166 can also be coupled to the SB/ICH 1120 through a
system bus. In one aspects of the present disclosure, a
keyboard 1170, a mouse 1172, a parallel port 1178, and a
serial port 1176 can be connected to the system bus through
the I/O bus. Other peripherals and devices that can be
connected to the SB/ICH 1120 using a mass storage con-

troller such as SATA or PATA, an Ethernet port, an ISA bus,
an LPC bridge, SMBus, a DMA controller, and an Audio
Codec.

Moreover, the present disclosure i1s not limited to the
specific circuit elements described herein, nor 1s the present
disclosure limited to the specific sizing and classification of
these elements. For example, the skilled artisan will appre-
ciate that the circuitry described herein may be adapted
based on changes on battery sizing and chemistry, or based
on the requirements of the intended back-up load to be
powered.
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The functions and features described herein may also be
executed by various distributed components of a system. For
example, one or more processors may execute these system
functions, wherein the processors are distributed across
multiple components communicating in a network. The
distributed components may include one or more client and
server machines, which may share processing, as shown by
FIG. 13, 1n addition to various human interface and com-
munication devices (e.g., display monitors, smart phones,
tablets, personal digital assistants (PDAs)). More specifi-
cally, FIG. 13 illustrates client devices including smart
phone 1311, tablet 1312, mobile device terminal 1314 and

fixed terminals 1316. These client devices may be commu-
tatively coupled with a mobile network service 1320 via
base station 1356, access point 1354, satellite 1352 or via an
internet connection. Mobile network service 1320 may
comprise central processors 1322, server 1324 and database
1326. Fixed terminals 1316 and mobile network service
1320 may be commutatively coupled via an internet con-
nection to functions in cloud 1330 that may comprise
security gateway 1332, data center 1334, cloud controller
1336, data storage 1338 and provisioning tool 1340. The
network may be a private network, such as a LAN or WAN,
or may be a public network, such as the Internet. Input to the
system may be recerved via direct user input and received
remotely either 1n real-time or as a batch process. Addition-
ally, some aspects of the present disclosure may be per-
formed on modules or hardware not identical to those
described.

Numerous modifications and vanations of the present
invention are possible 1 light of the above teachings. It 1s
therefore to be understood that within the scope of the
appended claims, the invention may be practiced otherwise
than as specifically described herein. As an example, the
invention may be practiced to utilize the speed of ego
vehicle to estimate the speeds and locations of environment
vehicles for 1mn-vehicle motion and path planning.

The mvention claimed 1s:

1. A system for ego vehicle speed estimation, comprising

a car-mounted monocular camera for capturing a
sequence of video frames of an outdoor scene from a
moving car, where the outdoor scene includes a road, as
a camera channel;

processing circuitry configured with
a single-shot network, and

a neural network time series model,

wherein the single-shot network segments features of
the road 1n the video frame sequence and generates
a masked-attention map for the segmented road
features;

a concatenation operation that concatenates the
masked-attention map as an additional channel to the
camera channel to generate a masked-attention
input;

wherein the neural network time series model receives
the masked-attention 1nput and generates an esti-
mated speed of the ego vehicle based on displace-
ment of the segmented road features 1n the video
sequences; and

output circuitry to output a signal indicating the estimated

speed.

2. The system of claim 1, wherein the processing circuitry
1s configured with a grayscale conversion circuit to convert
RGB of the video frame sequence to a grayscale video frame
sequence.
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3. The system of claim 1, wherein the single-shot network
1s a lane line segmentation network to segment lane line
segments as the road features.

4. The system of claim 3, wherein the single-shot network
includes a Spatial Pyramid Pooling component and a Feature
Pyramid Network component to obtain features of the video
frame sequence containing multiple scales and multiple
semantic level information.

5. The system of claim 1, wherein the single-shot network
contains a shared encoder and three separate decoders that
accomplish specific tasks of object detection, drivable area
segmentation and lane line segmentation.

6. The system of claim 1, wherein the processing circuitry
halts processing of the neural network time series model
while the segmented features do not include predetermined
road features.

7. The system of claim 1, wherein the neural network time
series model 1s a 3D convolutional neural network (3D-
CNN), and

wherein the 3D-CNN receives the masked-attention input

and generates an estimated speed of the ego vehicle

based on displacement of the segmented road features
in the video sequences.

8. The system of claim 1, wherein the processing circuitry
intermittently performs processing using the neural network
time series model.

9. The system of claim 1, wherein the processing circuitry
continuously monitors vehicle speed while the ego vehicle 1s
in an operating state and periodically estimates speed of the
cgo vehicle using the neural network time series model.

10. An embedded ego vehicle speed estimation apparatus,
comprising;

processing circuitry configured with

a single-shot network and a neural network time series

model,

wherein the single-shot network segments features 1n a
video Iframe sequence of a road and generates a
masked-attention map for the segmented road fea-
fures;

a concatenation operation that concatenates the
masked-attention map as an additional channel to a
camera channel to generate a masked-attention
input;

wherein the neural network time series model receives
the masked-attention input and generates an esti-
mated speed of the ego vehicle based on displace-
ment of lane line segments 1n the video sequences;
and

output circuitry to output a signal indicating the estimated

speed.

11. The apparatus of claim 10, wherein the processing
circuitry 1s configured with a grayscale conversion circuit to
convert RGB of the video frame sequence to a grayscale
video frame sequence.
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12. The apparatus of claim 10, wherein the single-shot
network 1s a lane line segmentation network to segment the
lane line segments as the road features.

13. The apparatus of claim 12, wherein the single-shot
network mcludes a Spatial Pyramid Pooling component and
a Feature Pyramid Network component to obtain features of
the video frame sequence containing multiple scales and
multiple semantic level information.

14. The apparatus of claim 10, wherein the single-shot
network contains a shared encoder and three separate decod-
ers that accomplish specific tasks of object detection, driv-
able area segmentation and lane line segmentation.

15. The apparatus of claim 10, wherein the processing
circuitry halts processing of the neural network time series
model while the segmented features do not include prede-
termined road features.

16. The apparatus of claim 15, wherein the neural ne work
time series model 1s a 3D convolutional neural network

(3D-CNN), and

wherein the 3D-CNN receives the masked-attention mnput
and generates an estimated speed of the ego vehicle
based on displacement of the segmented road features
in the video sequences.

17. The apparatus of claim 10, wherein the processing
circuitry intermittently performs processing using the neural
network time series model.

18. The apparatus of claim 10, wherein the processing
circuitry, continuously monitors vehicle speed while the ego
vehicle 1s 1n an operating state and periodically estimates
speed of the ego vehicle using the neural network time series
model.

19. A non-transitory computer readable storage medium
storing computer instructions, which when executed by
processing circuitry, perform a method of ego vehicle speed
estimation comprising:

segmenting, by a single-shot network, features 1n a video
frame sequence of a road and generates a masked-
attention map for the segmented road features;

concatenating, by a concatenation operation, the masked-
attention map as an additional channel to a camera
channel to generate a masked-attention input;

recerving, by a neural network time series model, the
masked-attention mput and generating an estimated
speed of the ego vehicle based on displacement of lane
line segments 1n the video sequences; and

outputting a signal indicating the estimated speed.

20. The storage medium of claim 19, further comprising,
segmenting, by the single-shot network, the lane line seg-
ments as the road features.
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