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Abstract

In remote sensing, Change Detection (CD) refers to locating surface changes in the
same area over time. Changes can occur due to man-made or natural activities, and
CD is important for analyzing climate changes. The recent advancements in satellite
imagery and deep learning allow the development of affordable and powerful CD
solutions. The breakthroughs in computer vision Foundation Models (FMs) bring
new opportunities for better and more flexible remote sensing solutions. However,
solving CD using FMs has not been explored before and this work presents the first
FM-based deep learning model, SAM-CD. We propose a novel model that adapts
the Segment Anything Model (SAM) for solving CD. The experimental results
show that the proposed approach achieves the state of the art when evaluated on
two challenging benchmark public datasets LEVIR-CD and DSIFN-CD.

1 Introduction

Change detection (CD) refers to the detection of relevant changes while ignoring irrelevant differences
(e.g. shadow and imagery impairments) of the same area at different periods of time. With the high
rate of city development and deterioration of the natural environment, the importance of CD is higher
than ever before [15]. CD plays an important role in environmental and surface change monitoring
[8]], urban planning [7]], disaster evaluation [[17]], agriculture [7], among many other applications.

In bi-temporal change detection, given two input images, the pre-event image I** € RV **C and the
post-event image 1> € RV ’ *C of the same place taken at two different times ¢, and t, where N
and C' are the spatial and spectral dimensions of the images. The binary CD refers to detecting the
accumulated change, 6t e {0, 1}N2, during the period = t, — t;. Some examples of CD image
pairs, from the LEVIR-CD dataset [3]], are shown in Figure E}

The complexity of satellite imagery data makes CD a challenging task. However, the recent advances
in foundation models (FMs) [10, |16l 6] bring new opportunities. Recently prompt learning in
computer vision [14] is gaining the attention of the researchers as an alternative to transfer learning
and fine-tuning. It becomes possible due to the emergence of efficient self-supervised [10], and
model-in-the-loop training procedures [16].
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(a) Changes from 172 only.

Figure 1: Binary change detection. Left to right: I**, I'*2 and 6t. The pairs are from LEVIR-CD
dataset.

The idea of prompt learning is to freeze the parameters of the foundation model and prompt it with
new learnable features. Another powerful approach is adaptation [6]], where a new module (adapter)
is attached to the frozen foundation model and training is performed on the adapter parameters only.

Among the recently developed FMs is the Segment Anything Model (SAM) [[L6], which has demon-
strated a great ability in zero-shot image segmentation of different modalities. Benefiting from the
powerful capabilities of SAM, in order to solve the CD problem, has not been explored before and
this article presents the first SAM-based CD model.

2 Related Work

The main scheme of solving CD follows the typical techniques used in dense prediction (e.g. semantic
segmentation) where an encoder, with a convolutional neural network (CNN) [19]], e.g. a ResNet
[[L1]} or Transformer [2] backbone, is used to extract features from the pre and post-event images. The
features, from both images, are then fused to form a change latent space. This space is then ingested
by a decoder module to predict the change masks. Regarding training, transfer learning is the most
common training procedure for CD models, where the backbone layers are trained (or fine-tuned)
alongside the change fusion and decoder layers.

Siamese neural networks are currently the most successful architectures [3, 18], and diverse feature
fusion methods have been developed. Multi-scale fusion methods are developed in [5} 18] to enrich
the change latent space. In [4] relation and scale-aware modules are developed to capture interactive
information of the change in both images. Auxiliary losses can guide feature fusion and improve
the quality of the detected masks [19]. The wide field of view, offered by Transformer backbones,
is shown to improve the context of the change features [2], making it easier to capture long-range
dependencies of the change features within the same image (using self-attention) and between the pre
and post-event images (with cross-attention).

3 SAM-CD

SAM was created to segment an input image using a prompt [[L6]. It can take multiple sparse (points
and bounding boxes) and/or dense prompts (binary masks). It was trained with model-in-loop with 1
billion masks. Please see [16] and Appendix [6.1]for further details.

The main challenge in solving CD using SAM is how to model and prompt the change? SAM takes a
single input image and produces segmentation masks based on prompts (e.g. points) provided by
the user. On the other hand, using SAM for CD requires decoding a change latent space (from both
images) and learning how to prompt the change to the SAM’s decoder.

To that end, two new components are developed: the change modeler and prompter (Figure 2a). The
former receives both the pre and post-event images and creates a change latent space. This space is
then used by the change prompter to instruct the decoder how to decode the change.

3.1 Change Modeler

As shown in Figure[2¢] both images are fed to the encoder. A subset, of length K, of feature maps
are extracted from uniformly sampled layers of the encoder and transformed as follows: each feature
map is projected from 64 x 64 x 678 to an embedding of size of 64 x 64 x 256, using a projection



block (Figure 2b). The resulting embeddings from both images are concatenated, on the channel
dimension, and projected from 64 x 64 x 512 to 64 x 64 x 256 to form K change embeddings of
size 64 x 64 x 256. These are then concatenated and passed through a residual block to obtain a
global change embedding of size 64 x 64 x 256, ready to be used by the decoder.

In practice, setting K = 5 layers is found sufficient. The ConvBlock in Figure[2b]is a sequence of:
a 2D convolution layer (Conv2D), a layer normalization [1] (LayerNorm), and a GELU activation
(GELU). SE in the Transformation Block (Figure @) is a squeeze-and-excitation layer
used to recalibrate the transformed embedding before feeding it to SAM. CAT in Figure |2c|is the
concatenation operator applied on the channel dimension.

3.2 Change Prompter

The prompter is a simple transformation block (Figure 2b), which transforms the change embedding
(obtained by the change modeler) into a prompt embedding of size 64 x 64 x 256. Both embeddings
from the modeler and prompter are fed to the decoder to obtain the change masks, as shown in Figures

2aand2d
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Figure 2: The proposed SAM-CD architecture and its main building blocks.

The aim of keeping the design of SAM-CD simple, i.e. using simple building blocks and operators
without complex feature fusion modules, is to minimize the complexity of SAM-CD in order to
validate the effectiveness of using SAM in solving CD.

4 Results

To evaluate the proposed work, it is compared to the state of art methods using the same Key
Performance Indicators (KPIs) found in the literature: Precision (Pre), Recall (Rec), F1-score (F1),
and the Intersection over Union (IoU) between the predicted and Ground Truth (GT) masks. The
evaluation protocol and implementation procedure are detailed in Appendix [6.2]



4.1 Datasets
4.1.1 LEVIR-CD

This is a very high-resolution imagery dataset for building change detection [5]. Each image is an
RGB tile with a size of 1024 x 1024 pixels, with binary labels. LEVIR-CD is collected from Google
Earth and contains 637 image pairs of which 448 are used for training, 64 for validation, and 129 for
testing. The bi-temporal difference ranges from 5 to 14 years in some pairs.

4.1.2 DSIFN-CD

This is a high-resolution imagery dataset collected from six different cities in China using Google
Earth [20]. It contains 3940 pairs (of size 512 x 512 cropped from six large tiles). The training
and validation sets are selected from five cities with 3600 and 340 pairs for training and validation,
respectively. The testing set contains 48 pairs from the sixth city only, and this dataset contains
various classes of changes: roads, buildings, croplands, and water bodies with bi-temporal difference
ranges from 5 to 17 years. Making it a challenging dataset due to change complexity and the intra-city
diversity between the training and testing sets.

4.2 Discussion

The results of SAM-CD and other models for both datasets are shown in Table[I] Regarding LEVIR-
CD, the proposed model achieved the best results and is ahead of the second best model USSFC-NET
by &~ +2.46%, —2.51%, 0.02% and 0.48% in precision, recall, IoU, and F1-score, respectively. When
considering the results of DSIFN-CD, which is more challenging, the proposed model achieves the
state of art in all metrics except the recall. Outperforming the second best model USSFC-NET with
~ +0.77%, —2.07%, +2.44%, and +1.55% in in precision, recall, IoU, and F1-score, respectively.

It deserves noting that, the proposed model is consistent in both datasets, which is reflected by the
high F1-score in both datasets. In addition, visual inspection results are reported in Appendix [6.3]

Model Year LEVIR-CD DSIFN-CD

Pre Rec IoU F1 Pre Rec IoU F1
FC-Siam-Conc [3] 2018 91.99 76.77 71.96 83.69 | 59.08 62.80 43.76 60.88
STANEet [9] 2020 83.81 91.00 77.40 87.26 | 51.48 3640 27.11 42.65
BIT [2] 2022 89.24 89.37 80.68 89.31 | 56.36 62.79 4225 59.40
USSFC-NET [18] 2023 89.70 93.42 8436 91.04 | 63.73 76.32 5320 6947
SAM-CD (proposed) 92.16 9091 84.38 91.52 | 68.42 7425 55.64 71.02

Table 1: The change detection results of the LEVIR-CD and DSIFN-CD test sets.

5 Conclusion

This work presented SAM-CD, a change detection model developed based on the Segment Anything
Model (SAM). Two main components were added to the SAM architecture. The change modeler
and prompter. During training, these two new components were the only trainable parts of SAM-CD
architecture, while the parameters of SAM were kept frozen. SAM-CD not only achieved state of the
art when evaluated on two challenging CD datasets, but also produced consistent results.

We believe that employing foundation models for CD will help to accelerate the analysis of climate
change problems and this work will unlock new CD solutions that leverage prompt learning and
foundation models adaptation. In the future, this work will be extended with new prompting designs
and advanced feature fusion methods, and more CD use-cases will be evaluated.
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6 Appendix

6.1 A:SAM-CD Formulation

SAM has three main building blocks: the image and prompt encoders, and a mask decoder. At the
inference time, SAM receives an image I € RY *xC and a prompt P and produces a set of masks.

The image encoder, Ej,, is a masked auto-encoder (MAE) model [10], and there are two prompt
encoders, Fyparse for sparse prompts, and Egenee for dense prompts. For sparse prompts, Fpare 1S a
simple layer that learns positional embeddings of points and bounding boxes. For dense prompts,

Elgense s a CNN module. The mask decoder D, is a Transformer module that decodes the image
embeddings using the prompt embeddings. Formally, we can model SAM as:

SAM : Dyask (Ein (1))

Prompted by: {Edense(Pmask)a Catc (Esparse(Ppoints)7 Tout) } €))
where 7" is the set of output trainable tokens, and Cat¢ is a concatenation operator applied on the
channel dimension.

For a given CD dataset X', and a pre-trained SAM model with frozen parameters 6, and the change
trainable parameters ¥, the CD objective is to find «J that minimizes the change prediction function f:

mﬁinE{(mJtz)’é,s}NXﬁ(f([tl,]tz;9,19),55) 2

where f is the SAM-CD model, and £ is the adopted loss function which is a combination of the
dice and binary cross entropy losses [21]]:

1 B

- 1 ;o 28tM}E

L(M',6') = —— (65 log Mj, + t“g) , 3)
= \2 Op + My

where M is the obtained logits from f and B is the batch size.

Following the presented formulation for SAM in (T)), SAM-CD can be formulated likewise as:
SAM-CD : Do (S7)
prompted by: {Pf, Catc (o, TO‘“)} 4)

where S is the change embedding obtained by the change modeler, and Pt is the change prompt
embedding obtained from the change prompter. Cat¢ is the concatenation operator applied on the
channel dimension, and ¢ is the SAM’s pre-trained no-prompt token.

6.2 B: Evaluation protocol and implementation details

The KPIs used in the evaluation are the same ones used in the literature:

TP
Precision = m (5)



TP
Recall = ———
= TP Y FN ©)

TP
Intersection over Union = TP+ FN 7 FP @)

Precisi Recall
Floscore — 2 x rec¥s?on x Reca @)
Precision + Recall

The proposed architecture is implemented in PyTorch, and the adopted SAM model is the sam-vit-h
[L6], where its weights are frozen while the change modeler and prompter blocks are initialized
randomly. The number of layers sampled from SAM’s encoder to model the change is &K' = 5. The
optimizer used to train the SAM-CD is the AdamW, with the adopted hyper-parameters as shown in
Table

Parameter Value

Initial RL 0.001

Momentum 0.9

Weight decay 0.00001

Training Schedules 400 epochs (for LEVIR-CD) and 100 epochs (for DSIFN-CD)
Scheduler CosineSchedualer with minimum RL = 0

Hardware V100 GPU

Batch Size 8

Table 2: The parameters being adopted for training.

During training, flip, rotate, scale, and clip augmentations were used and the input is scaled to
1024 x 1024 for both datasets, and no augmentation was applied during the inference time.

6.3 C: Visual Results

The visual inspection results are shown in Figures [3a]and [3b] Both models are able to obtain good
masks. As can be seen, SAM-CD predicts less false positive/negative areas compared to USSFC-NET.
This is more clear in the DSIFN-CD test set, where it is more challenging due to the complexity of
the background and diversity of the change classes.



(a) Results from the LEVIR-CD test set. (b) Results from the DSIFN-CD test set.

Figure 3: The results from both LEVIR-CD and DSIFN-CD test sets. Blue: false negative, and red:
false positive. Rows top to down: pre-event image, post-event image, ground truth, USSFC-NET
[L8] predictions, and SAM-CD predictions.
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